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Attend to Chords: Improving Harmonic Analysis of 
Symbolic Music Using Transformer-Based Models
Tsung-Ping Chen and Li Su

Automatic chord recognition (ACR) has long been a topic of interest in the field of Music Information 
Retrieval (MIR), due to not only its commercial applications, but also its support for advanced music 
analysis. While a lot of ACR-related work deals with audio data, ACR from symbolic music has received 
less attention. In addition, conventional ACR systems specify chords in a key-dependent way (usually with 
the root note and the chord quality) and hence are unable to reveal the high-level patterns and harmonic 
structures. These issues hinder the developments of music analysis and music generation via ACR systems. 
With the success of deep learning, it is viable to build a symbolic ACR system using a more comprehensive 
chord vocabulary such as functional harmony. Recently, two advanced models, namely the Bi-directional 
Transformer for Chord Recognition (BTC) and the Harmony Transformer (HT), introduced for the first time 
the multi-head attention mechanism to ACR, showing the great capability of the attention mechanism 
to improve the performance of ACR. In this paper, we systematically study the performance of the BTC 
and the HT in terms of symbolic ACR, and propose an improved model. Experiments on conventional ACR 
and advanced functional harmony recognition indicate that the HT has the potential to surpass the BTC, 
especially in terms of chord segmentation quality. Also the overall performance of the HT is further 
improved by enhancing the learning of local context and positional information.

Keywords: automatic chord recognition; functional harmony recognition; symbolic music; Transformer; 
multi-head attention; chord segmentation

1. Introduction
1.1 Automatic Chord Recognition
Chord recognition is a process to identify the harmonic 
entity of each musical segment, usually by giving a chord 
name to the segment in question. This problem is not as 
simple as it may seem, for it concerns several aspects of 
musical harmony, and the answer to the problem may 
not be unique. For instance, a C major sixth chord, C6, 
in popular music may be termed as an A minor seventh 
chord in first inversion, Am7/C, in classical music. In 
other words, the chord vocabulary differs according 
to musical style and context. Moreover, the boundary 
of each segment which deserves to be recognized as a 
single chord is not explicitly defined by the music itself. 
Therefore, it is usually difficult to partition music into 
harmonically meaningful segments. A comprehensive 
chord recognition approach should specify the 
information of when to identify a chord and how to build 
the chord. Owing to its complexity, ACR is still challenging 
even nowadays.

1.2 ACR in Audio Domain
During the past decades, researchers have studied ACR, 
particularly for audio data, from different aspects, such 
as chord segmentation (Yoshioka et al., 2004; Harte et 
al., 2006; Degani et al., 2015), beat and key (Zenz and 
Rauber, 2007), bass line (Yang et al., 2016), root notes 
(Yang et al., 2016), and meter (Degani et al., 2017). 
Although there are various approaches to ACR, much of 
the work targets calculation of effective chroma features 
for comparison with a set of chord templates (Fujishima, 
1999; Lee, 2006; Stark and Plumbley, 2009; Oudre et al., 
2011). Based on the chroma features, stochastic methods 
such as Hidden Markov Models (HMMs) and Conditional 
Random Fields (CRFs) are frequently employed to predict 
chord progressions (Sheh and Ellis, 2003; Cho and 
Bello, 2009; Ueda et al., 2010; Deng and Kwok, 2016; 
Korzeniowski and Widmer, 2016). This combination of 
audio feature extraction and chord sequence prediction 
can be analogous to the integration of acoustic modeling 
and language modeling in the field of speech recognition 
(Li and Wu, 2015), and has become a typical framework for 
ACR from audio.

Along with the rise of deep learning, ACR has experienced 
a paradigm shift from template-based algorithms to data-
driven approaches. Works on ACR have begun to explore the 
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capability of deep learning models, such as convolutional 
neural networks (CNNs) and recurrent neural networks 
(RNNs), for extracting non-handcrafted features and for 
modeling chord sequences (Humphrey and Bello, 2012; 
Boulanger-Lewandowski et al., 2013; McFee and Bello, 2017; 
Hori et al., 2017). Besides, various chord vocabularies ranging 
from basic triads (Zhou and Lerch, 2015; Korzeniowski and 
Widmer, 2016) to more complex chords (Humphrey and 
Bello, 2015; Deng and Kwok, 2017; Jiang et al., 2019) have 
been taken into consideration in ACR systems. However, 
most of the audio datasets commonly used in ACR work 
provide only chord labels without the audio data because of 
copyright restrictions, preventing evaluation on the same 
benchmarks. Readers are recommended to refer to Pauwels 
et al. (2019) for a thorough review of ACR from audio during 
the past two decades.

1.3 ACR in the Symbolic Domain
In comparison to ACR from audio data, ACR from symbolic 
music has received less attention (Scholz and Ramalho, 
2008; Rhodes et al., 2009; Rocher et al., 2009; Masada 
and Bunescu, 2019). One reason is that the public are 
more likely to access audio content rather than symbolic 
music. Another reason is that high-quality symbolic music 
data and the corresponding annotations are relatively 
scarce. The difference between audio ACR and symbolic 
ACR mainly lies in the processing of the music data. 
Audio music data contain expressive information (e.g., 
timbre) and are often represented as spectrograms or 
chromagrams using the Short-Time Fourier Transform 
(STFT) or the constant-Q transform (CQT). On the other 
hand, symbolic music data comprise abstract concepts of 
music (e.g., the pitch of each single note), and hence can 
be represented as sets of note-related features (Masada 
and Bunescu, 2017) or piano rolls (Chen and Su, 2018). 
In spite of such a difference, symbolic ACR and audio ACR 
are capable of achieving competitive performances with 
nearly identical neural network architectures, since the 
two types of data can be represented and structured in a 
similar way (Chen and Su, 2019). It has to be mentioned 
that symbolic ACR using deep learning approaches is still 
in its preliminary stage, and previous research employed 
different datasets (usually comprising limited amounts of 
data) for evaluation. Therefore, more systematic studies 
are needed to explore the capability of deep neural 
networks and to set benchmarks for this field.

The development of symbolic ACR is valuable from 
four points of view. First, while the majority of research 
by musicologists and music theorists focuses on symbolic 
music representations, relatively few symbolic ACR and 
related MIR tools are available. Second, symbolic music 
data are invariant to some aspects of musical interpretation 
and thus can reduce the bias resulted from the performing 
and the recording factors. Third, the analysis of symbolic 
music data can be easily related to the abstract aspect of 
music by which musicological insights are derived. Finally, 
the growing interest in music generation will yield a lot of 
symbolic music data (Dong and Yang, 2018; Donahue et 
al., 2019; Lim et al., 2020); hence an increase in demand 
for symbolic ACR would likely occur before long.

1.4 Functional Harmony Recognition
Functional harmony is an advanced way of describing 
chords, typically by performing Roman numeral 
(RN) analysis. Traditionally, RN analysis includes the 
specification of key (or tonic), modulation, chord quality, 
chord inversion, and chord alteration. Instead of merely 
giving a chord name to each harmonic entity, as is usually 
done in ACR work, RN analysis represents chords as RNs 
which indicate the root notes of the chords in relation to the 
tonic, and specify the harmonic functions (hence the term 
functional harmony). As a result, the RN representation is 
key-invariant, and provides more informative analysis of 
musical harmony. According to the aforementioned facts, 
the recognition of functional harmony involves more 
than identifying chords, and is more demanding than the 
conventional ACR.

While some research has contributed to functional 
harmony recognition (Tsui and MacLean, 2002; Raphael 
and Stoddard, 2004; Illescas et al., 2007; Passos et al., 
2009; de Haas et al., 2011), very few of them employed 
deep learning methods, partly due to the limited amounts 
of training data. Fortunately, several symbolic corpora 
containing RN annotations have been published in the 
past few years, e.g., the TAVERN dataset (Devaney et al., 
2015), the ABC dataset (Neuwirth et al., 2018), the BPS-FH 
dataset (Chen and Su, 2018), and the Bach Preludes 
(Tymoczko et al., 2019). In addition, researchers have 
begun to address the functional harmony recognition 
task using advanced deep learning techniques (Chen and 
Su, 2019; Micchi et al., 2020). Considering that functional 
harmony is a fundamental way to find common patterns 
in chord progressions and to uncover the tonal structure 
of a musical piece, research on harmony recognition 
will benefit both the symbolic MIR and the musicology 
communities (Gotham and Ireland, 2019).

1.5 Attend to the Chords
As in language, chord progressions and musical harmony 
are highly context-dependent. Therefore, it is important 
to consider the relations between harmonic entities 
when recognizing chords and their functions. Although 
RNNs are representative models for capturing contextual 
information, the attention mechanism has shown its 
potential for sequence modeling (Bahdanau et al., 2015; 
Hermann et al., 2015; Parikh et al., 2016). The first fully 
attention-based model, namely the Transformer (Vaswani 
et al., 2017), was accordingly proposed to compete with 
the previously existing models of sequence learning. Its 
variant, BERT (Bi-directional Encoder Representations 
from Transformers) (Devlin et al., 2019), was devised 
to function as a pre-trained model for learning word 
representations. These attention-based models made a 
lot of breakthroughs in language-related tasks, and stood 
as landmarks in natural language processing (NLP). Due 
to its promising performance, the attention mechanism 
has been applied to many other tasks beyond the realm 
of NLP, such as image and music generation (Parmar et al., 
2018; Huang et al., 2019).

Recently, two Transformer-based models, the 
bi-directional Transformer for chord recognition (BTC) 
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(Park et al., 2019) and the Harmony Transformer (HT) 
(Chen and Su, 2019), were proposed for the first time 
to tackle the ACR task. The BTC utilized a self-attention 
mechanism to capture the long-term dependency in 
musical sequences, and showed its ability to segment 
chord sequences; the HT estimated chord transitions 
(or chord boundaries), and then recognized chords via 
attending to the segmentation-informed sequence.1 
Although the two models were built upon the Transformer, 
they differed from each other in two aspects. First, the BTC 
utilized the encoder part of the Transformer, while the HT 
employed the entire Transformer architecture. Second, 
the BTC was trained on audio datasets, while the HT was 
applied to both audio and symbolic music data. In spite of 
these differences, the two models have demonstrated the 
effectiveness of the attention mechanism on modeling 
chord progressions, and outperformed other promising 
models in previous research (Korzeniowski and Widmer, 
2016, 2017; McFee and Bello, 2017). Since the attention 
mechanism can access all positions of a sequence at a 
time, the Transformer-based models are theoretically 
more capable of capturing thorough knowledge of the 
sequence than RNNs, and therefore may alleviate the 
issue of temporal fragmentation when modeling chord 
sequences at the time-frame level (Korzeniowski and 
Widmer, 2017).

In this work, we tackle symbolic ACR using Transformer-
based models, and propose improvements on the models. 
With evaluations on the conventional chord recognition 
and the functional harmony recognition tasks, we show 
that the HT is more promising than the BTC in terms 
of recognition accuracy and segmentation quality; it is 
also validated that the proposed improvements advance 
the overall performance of ACR. The major contribution 
of this paper is to propose an improved Transformer-
based network for symbolic ACR, specifically on the 
challenging functional harmony recognition task, via a 
systematic investigation on the symbolic ACR research 
and Transformer-based ACR methods. The remainder of 
the paper is arranged as follows: we first introduce the 
Transformer, examine the architectures of the HT and the 
BTC, and propose methods to advance the performance 
of chord recognition (Section 2). Then we conduct 
experiments to evaluate the models and the proposed 
methods using two symbolic datasets (Section 3). The 
future work is then discussed (Section 4). Finally, the 
concluding remarks are presented (Section 5).

2. Transformer for Chord Recognition
2.1 Building Blocks of Transformer
The Transformer comprises two major computational 
blocks: the multi-head attention (MHA) and the feed-
forward network (FFN). For the MHA, the concept of key-
value memory is adopted, in which the keys are used to 
address relevant memories with respect to a query, and 
the corresponding values are subsequently returned 
(Miller et al., 2016). For example, given a query to search 
for a document in a database, the search engine will map 
the query against a set of keys (e.g., title, description, etc.) 
associated with candidate documents in the database, 

then present the best matched documents (values). In the 
case of sequence-to-sequence learning, the queries stand 
for the target sequences, while the keys and the values 
both represent the source sequences. Specifically, given 
queries (Q) and a set of key-value pairs (K, V), an attention 
function can be generalized to compute a weighted sum of 
the values (i.e., a context vector) for each query according 
to the relations between the query and the corresponding 
keys. By separately dividing Q, K, V into partitions, the 
MHA applies multiple independent attention functions 
(hence multi-head) to the partitions and extracts various 
context vectors (Ci):
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where WC, Q
iW , K

iW , and V
iW  are learnable parameter 

matrices, h is the number of heads, i indicates the ith 
partition, and d is the feature size of Ki.

According to the inputs of the function, we differentiate 
two types of MHA:

•	 Inter-MHA: Q and K represent different sequences, e.g., the 
target sentences (Q) and the source sentences (K).

•	 Intra-MHA: Q and K represent the same sequences; also 
known as self-attention.

Regarding the valid positions (or time steps) of a sequence 
to which the attention function is applied, MHA can be 
classified into another two categories:

•	 Bi-directional MHA: all positions are valid.

•	 Uni-directional MHA: each position can only attend to those 
positions either preceding itself (backward) or succeeding 
itself (forward).

For the Transformer, as shown in Figure 1a, the MHA 
units in the encoder layers and the first MHA unit in each 
decoder layer are intra-MHAs, while the second MHA unit 
in each decoder layer is an inter-MHA. It is worth noting 
that the intra-MHAs in the decoder are uni-directional 
(backward) due to the autoregressive decoding approach 
of the Transformer.

On the other hand, the FFN unit is composed of 2 
fully-connected layers by which the input is projected 
onto a higher dimensional space followed by a rectified 
linear unit (ReLU), and then projected back to its original 
dimensions:

     1 1 2 2FFN( ) ReLU( ) ,W b W b  (2)

where W1 and W2 are parameter matrices, and b1 and 
b2 are learnable bias vectors. Alternatively, the fully-
connected layers in the FFN unit can be replaced with 
1-dimensional convolutional neural networks:

 1 1 2 2FFN ( ) ReLU( ) ,         W b W b  (3)
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where * denotes the convolution operation. We refer 
to the two variants of FFN as fully-connected FFN and 
convolutional FFN. The sizes of all the parameter matrices 
are shown in Table 1.
In practice, the MHA and the FFN both employ 
residual connections (He et al., 2016) followed by layer 
normalization (Ba et al., 2016). Moreover, since the two 
computational units process all positions of a sequence 
in a parallel manner without regard to the sequential 
order, Transformer-based models usually incorporate 
explicit position information, such as absolute positional 
encodings (Vaswani et al., 2017) and relative positional 
encodings (Shaw et al., 2018; Dai et al., 2019; Huang et 
al., 2019).

2.2 BTC versus HT
The BTC is built upon the Transformer encoder in a 
fashion similar to BERT, aiming to learn the bi-directional 
representations of the inputs. Specifically, the BTC learns 
the representations by employing two uni-directional 
intra-MHAs, one forward and the other backward, both 
followed by a convolutional FFN, as depicted in Figure 1b. 
This bi-directional approach makes a distinction from 
BERT in which the bi-directional intra-MHA is used. 
Although the technique of combining forward and 
backward intra-MHAs has been practiced in the fields of 
NLP and computer vision (Shen et al., 2018; Hossain et al., 
2019), its effect on music data is still unexplored.

In contrast to the BTC, the HT retains the encoder-
decoder architecture for the sake of integrating the chord 

change prediction into the chord recognition process. As 
shown in Figure 1c, the encoder and the decoder are the 
same as that of the Transformer, except that the intra-MHA 
of the decoder is bi-directional rather than uni-directional 
(backward). This difference results from the fact that the 
HT adopts a non-autoregressive framework (Gu et al., 
2018), and hence can dismiss the backward constraint. 
Another difference is that the encoder of the HT has an 
additional output for the chord change prediction.

Comparatively speaking, the HT is more complex than 
the BTC in terms of model architecture and training 
techniques. In the aspect of model architecture, the HT 
has one additional inter-MHA in order to connect the 
decoder with the encoder. As a result, the HT has slightly 
more parameters than the BTC (around 4h2d2). In practice, 
however, the BTC consists of more repetitive layers than 
the HT (8 and 2, respectively), resulting in higher model 
capacity. In the aspect of training techniques, the HT 
includes a computational block called regionalization (not 
shown in Figure 1c) to pass the chord change prediction 
to the decoder; also, softmax-normalized layer weights are 
employed to compute the weighted sum of the outputs 
from all repeated layers.

2.3 Improving the Transformer-Based Models
Both the BTC and the HT process the input sequences at the 
frame level. That is, the intra-MHAs at the bottom of the 
models represent each frame with respect to the relations 
between the individual frames. However, the frame sizes 
(which may be on the scale of 100 milliseconds for audio 

Table 1: Number of parameters in the MHA and the FFN blocks; h, d, and n stand for the number of heads, the feature 
size of the partitioned keys (Ki), and the kernel size of the convolution, respectively. We set h = 4, d = 32, and n = 3 
for the experiments.

Computational Block Parameter Size Total

Multi-head Attention 
WC hd × hd 

4h2d2
Q K V, ,i i iW W W hd × d

Fully-connected FFN 
W1 hd × 4hd

8h2d2

W2 4hd × hd

Convolutional FFN 
1
¢W , 2

¢W n × hd × hd 2nh2d2

Figure 1: Basic building blocks of the Transformer, the bi-directional Transformer for chord recognition (BTC), and the 
Harmony Transformer (HT) models, using on multi-head attention (MHA) and feed-forward networks (FFN). Note that 
both the encoder and the decoder have repetitive layers which are not shown in the figure.
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and of a 16th note for symbolic music) are somewhat 
small for encoding harmonic content. Moreover, the 
MHAs access all the time steps of a sequence in parallel 
at the expense of knowing the sequential order. Although 
the BTC and the HT employed the absolute positional 
encodings of the Transformer in compensation, it was 
argued that the relative differences in position matter 
more for music (Huang et al., 2019).

We propose to improve the Transformer-based ACR 
models according to the two aforementioned aspects. 
First, we introduce intra-block self-attention (Shen et al., 
2018), or intra-block intra-MHA, to the input of the models 
for learning localized harmonic features. Concretely, the 
intra-block intra-MHA unit splits a sequence into B blocks 
of equal length m and captures the local dependency 
within each block with the bidirectional intra-MHA:

(1) (1) (1)

( ) ( ) ( )
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where X(b) indicates the bth block of X, and (·) denotes a 
concatenation along the time dimension. In other words, 
the intra-MHA is applied to the B blocks individually for 
modeling the local context inside each of them. Second, 
we employ relative positional encodings (Dai et al., 2019) 
and positional attention (Gu et al., 2018) to enhance the 
model’s knowledge of sequential order. In this way, the 
relative positional encodings enable the MHA to consider 
the pairwise relationships between its input elements, 
while the positional attention incorporates positional 
information directly into the attention process.

We apply the aforementioned techniques to the HT, 
and the architecture of the derivative model (denoted 
as HT*) is illustrated in Figure 2. The intra-block intra-
MHAs (followed by convolutional FFNs) are added to 
the bottoms of the encoder and the decoder; the relative 

position encodings are introduced to all the MHAs; and the 
positional attention is employed in the decoder according 
to its original setting. In addition, the fully-connected FFNs 
of the HT are replaced by the convolutional FFNs in order 
to capture the adjacent information of their inputs before 
outputting to the next repetitions. From the perspective of 
the network topology, the combination of the intra-block 
intra-MHA and the bi-directional intra-MHA functions in 
a way similar to a convolutional recurrent neural network 
(CRNN) which captures local features with convolutions 
first and models long-term structure with recurrences 
thereafter (McFee and Bello, 2017; Micchi et al., 2020). 
We use m = 4 for the intra-block intra-MHA, and set the 
maximum relative position to the input sequence length. 
In the following section, we experimentally compare the 
BTC and the HT, and validate the improvement in the HT*.

3. Experiments
3.1 Testing Corpora
To train the models for the chord recognition and the 
functional harmony recognition tasks, two corpora are 
used: the BPS-FH dataset and the Bach Preludes, where 
symbolic music and human-annotated RN labels are 
provided. The former includes complete first movements 
of the Beethoven Piano Sonatas (32 movements in total), 
and the latter consists of 24 preludes from the first book of 
Bach’s Well Tempered Clavier. We use the BPS-FH dataset 
because it was used to evaluate the HT. In addition, we 
include the Bach Preludes as it has similar properties to 
the BPS-FH dataset (both comprise piano solos). We leave 
other datasets (e.g., the ABC dataset and the TAVERN 
dataset) for future work.

The analytic information of the Bach Preludes is 
transcribed into the tabular format of the BPS-FH for 
unifying the notation system of the two corpora. We 
additionally derive chord symbols from the RN annotations 
for the chord recognition task. In sum, there are 11478 
labels in the BPS-FH, and 2615 labels in the Bach Preludes. 
All analyzed chords in the two corpora are categorized 

Figure 2: Improved Harmony Transformer (HT*).
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into 10 classes, as shown in Table 2. Figure 3 depicts the 
statistics of the annotated chords of the two corpora in 
terms of chord quality and degree. The statistics of chord 
quality show that major, minor and dominant seventh take 
the majority in both corpora, followed by minor seventh, 
diminished, and diminished seventh. And the degree 
distributions also manifest a similarity between the two 
corpora, in the sense that the top six chord degrees (i.e., 
1,5,2,4,7,6) are almost the same.

3.2 Data Representation
The musical pieces in the repertoire are represented as 
binary piano rolls with the time resolution of one 16th 
note, resulting in sequences of 88-dimensional feature 
vectors. A sliding window of length 128 (equal to 32 
quarter notes) with a hop size of 16 is applied to the 
piano rolls to generate the instances for recognition. For 
the chord recognition task, we use the maj-min chord 
vocabulary (including 24 major and minor chords plus an 
additional ‘others’ class which is excluded from evaluation). 
The mapping of the chord qualities is shown in Table 2. 
We choose this vocabulary rather than other vocabularies 
of larger size for two reasons. First, both the BTC and the 
HT were evaluated using the same vocabulary. Second, 
there is still room for improvement in ACR even using this 
relatively small vocabulary. For the functional harmony 
recognition task, we decompose the RN labels into two 
parts, i.e., the key and the RN, whose vocabulary sizes are 
42 and 5040 respectively, as delineated in Table 3.

3.3 Experimental Setting
We evaluate the BTC, the HT, and the HT* on the chord 
recognition and the functional harmony recognition tasks; 
and 4-fold cross validation is performed on each corpus. To 
create cross-validation sets, we naively assign a fold id to 
a piece according to the piece’s id: fold_id = piece_id % 4. 
The training data are augmented via modulations (from 3 
semitones down to 6 semitones up), leading to 10 times 
the original amount of data. As a result, the amounts 
of training and validation data are around (54320, 294) 

Table 2: Annotated chord qualities and the mapping to 
the major-minor vocabulary.

Quality Major-Minor 
Mapping

Major (M) M

Minor (m) m

Augmented (a) others

Diminished (d) others

Major Seventh (M7) M

Minor Seventh (m7) m

Dominant Seventh (D7) M

Diminished Seventh (d7) others

Half-diminished Seventh (h7) others

Augmented Sixth (a6) M

Figure 3: Statistics of the chord quality and degree annotations (some minor cases are omitted).
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for the BPS-FH and (5380, 26) for the Bach Preludes. In 
addition, we train several variants of the BTC and the HT 
for the ablation study, and a CRNN for the comparison 
with the HT*:

•	 BTC-singleBi: the pair of uni-directional 
 intra-MHAs is replaced with a single bi-directional 
intra-MHA.

•	 BTC-FC: the convolutional FFN is replaced by a fully-
connected FFN.

•	 HT-noReg: the regionalization unit is removed.
•	 HT-noW: only the output of the final layer is used 

instead of the weighted sum of all the layers.
•	 CRNN: 10 one-dimensional convolution layers 

( convolving along the time dimension) with kernel 
size = 9 (equal to a window size of 2 quarter notes) 
plus 1 bi-directional Long Short-Term Memory 
(LSTM) layer.

The BTC-singleBi and the BTC-FC are employed to examine 
the effectiveness of the uni-directional intra-MHA pair 
and the convolutional FFN; the HT-noReg and the HT-noW 
are used to verify the contributions of the regionalization 
unit and the layer weights. As for the CRNN, we regard it 
as the benchmark for the HT* since they have a similar 
network topology. The architecture of the CRNN is 
modified from the network of Micchi et al. (2020), whose 
number of parameters is made comparable to the HT*. 
We set the number of repetitive layers to 2 for all models 
(other hyperparameters can be found in Table 1). During 
training, we set the dropout rate to 0.1; early stopping is 
applied once the model’s performance stops improving on 
validation data for 10 consecutive epochs, and we report 
the best performance for evaluation.2

3.4 Evaluation Metrics
All models are evaluated in two aspects: 1) frame-wise 
chord recognition accuracy, 2) chord segmentation 
quality. The former shows the capability of a model to 
correctly predict chords at the frame level, while the 

latter assesses the predicted chord sequences from 
the perspective of chord segmentation. We utilize the 
directional Hamming distance (DHD) (Mauch and Dixon, 
2010; Oudre et al., 2011) to evaluate the segmentation 
quality (SQ):
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where Sn denotes the frames belonging to the nth segment 
of the annotated segmentation S, and  n ¢S  denotes the 
frames belonging to the n′th segment of the predicted 
segmentation S. The SQ value reflects the similarity of two 
segmentations, ranging from 0 to 1. The higher the value, 
the better the segmentation quality. In particular, a value 
of 1 indicates that the two segmentations are exactly the 
same.

3.5 Results
3.5.1 Ablation Study and Comparison of BTC and HT
Table 4 shows the overall performance of each model. 
For the BTC-singleBi, using single bi-directional MHAs 
instead of uni-directional MHA pairs appears to lower the 
recognition accuracy when the amount of data increases 
(the case of the BPS-FH) and when the complexity of 
the task increases (the case of functional harmony). 
However, this may result from the fact that the number of 
parameters in the model is half of that in the BTC. For the 
BTC-FC, the substitution of the fully-connected FFN for 
the convolutional one is harmful to the performance in 
most of the cases, because a fully-connected network only 
computes the weighted sum of its inputs and does not 
take into account the temporally adjacent information 
which helps relate local features to higher-level semantics 
(Ren et al., 2019).

On the other hand, the HT surpasses the HT-noW in 
nearly all measures on the BPS-FH (while they are more 
or less comparable on the Bach Preludes), indicating 
that it might be beneficial to use information from all 
the layers of the network. Given that previous work has 
shown that different layers of a deep neural network 
tend to encode different types of information (Melamud 
et al., 2016; Belinkov et al., 2017), we believe that the 
employment of layer weights can increase the model’s 
capability, especially when the encoder and the decoder 
of the HT are designated to different objectives (i.e., 
chord segmentation and chord recognition). Moreover, 
the HT outperforms the HT-noReg in four out of the 
five measures on the BPS-FH and in three measures on 
the Bach Preludes, validating the employment of the 
regionalization unit.

In comparison with the BTC, the HT appears to be more 
competent for it is more accurate in eight out of the 
ten measures (four from each corpus). In particular, the 
worst HT variant even outperforms all the BTC variants 
in terms of chord segmentation quality, showing that the 
concurrent estimation of harmonic changes benefits the 
outcome of chord segmentation.

Table 3: Vocabularies of the functional har-
mony recognition task. The 21 tonics include 
{C,D,E,F,G,A,B} by { , ,  }; the 2 modes are 
{major, minor}; the 9 primary degrees are 
{1,2,3,4,5,6,7,b2,b7}; the 14 secondary 
degrees are {1,2,3,4,5,6,7,#1,#3,#4,b1,
b3,b6,b7}; the 4 inversions are {root 
position,1st,2nd,3rd}.

Output Component Vocabulary Size

Key 
21 tonics 

42
2 modes 

Roman Numeral 

9 primary degrees 

5040
14 secondary degrees 

10 qualities 

4 inversions 
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3.5.2 Improvement on the HT
It can be seen that the HT* substantially outperforms the 
CRNN benchmark in all cases. Although CRNN-based 
networks are known for their ability to jointly learn local 
features and model sequences, the employed CRNN fails to 
compete with the HT*. In comparison to the HT, the HT* 
obtains a consistent gain in overall performance, and the 
boost in segmentation quality is especially notable, validating 
the proposed improvement on learning the localized and 
position-related information. More strikingly, the HT* 
outperforms all the other models in comparison and sets 
new records for the current experiments. An examination 
into the multi-head attention mechanism reveals that 
the attention heads capture various concepts of musical 
harmony. As depicted in Figure 4a, two attention heads 
in the intra-MHA of the decoder display distinct attention 
patterns: one head (on the left hand side) appears to be 
aware of the chord regions, hence blocks of the attentive 
regions are formed along the diagonal of the attention 
map; the other head emphasizes more on the harmonic 
changes, resulting in several vertical lines traversing the 
attention map. We also observe different attention patterns 
in the inter-MHA of the decoder. As illustrated in Figure 4b, 
there are different block patterns signifying the harmonic 
structure of the input segment on the two attention maps. 
More specifically, the attention map on the left hand side 

reveals that the HT* is capable of recognizing the boundaries 
between the chords (as there are many darker lines around 
the positions where the chords change); while the attention 
map on the right hand side indicates that the tonic chord 
(F:m) and the dominant chord (C:M) put emphasis on 
different parts of the encoder sequence (see the red regions 
on the attention map).

To summarize, the performance of the Transformer-
based model can be advanced by employing the intra-
block intra-MHA and by enhancing the contextual 
information. Additionally, it is observed that the MHA 
units in the model can capture various harmonically 
meaningful characteristics of music, yielding prominent 
performances on both the chord recognition and the 
functional harmony recognition tasks. However, it 
should still be noted that these results are obtained by 
evaluating the model on only two piano solo corpora. 
Experiments using more diverse data are required for a 
more comprehensive assessment of the model.

4. Discussion and Future Work
The chord recognition accuracy is a simple and universal 
approach to evaluate ACR systems, but it is only part of the 
story. With formulating chord recognition as a classification 
problem, ACR systems using deep learning approaches are 
restricted to a single ground truth. In practice, however, 

Table 4: Evaluations with the BPS-FH dataset and the Bach Preludes. All the scores (in percentage) are averaged over 4 
validation sets; the standard deviations of the scores are also provided.

BPS-FH

Model Chord Symbol Recognition Functional Harmony Recognition

Accuracy Segmentation Key Roman numeral Segmentation

BTC 82.46±1.55 81.30±1.08 77.65±1.83 37.98±1.34 66.73±4.05

BTC-singleBi 82.16±1.66 80.78±1.39 75.96±0.79 35.77±1.85 68.83±1.69

BTC-FC 82.06±1.83 81.24±1.26 78.40±2.10 37.60±1.76 65.56±3.86

HT 83.19±1.65 83.47±1.22 77.94±2.24 37.00±2.88 71.93±2.72

HT-noW 83.06±1.58 83.26±0.71 77.13±1.78 36.84±2.39 73.53±1.26

HT-noReg 83.19±1.31 83.33±1.26 76.70±1.26 35.33±1.79 70.51±1.16

CRNN 79.79±0.84 81.49±1.91 75.56±2.84 34.83±1.38 67.75±3.59

HT* 83.98±1.08 85.09±0.96 79.07±2.70 41.74±2.63 75.50±1.72

Bach Preludes

Model Chord Symbol Recognition Functional Harmony Recognition

Accuracy Segmentation Key Roman numeral Segmentation

BTC 74.12±0.12 77.20±3.64 48.63±4.48 25.25±1.76 64.19±2.08

BTC-singleBi 75.67±1.42 78.85±4.81 46.24±5.90 23.35±1.99 60.40±6.25

BTC-FC 75.53±1.22 77.81±4.51 46.05±1.84 22.97±2.19 57.24±4.17

HT 77.18±1.24 80.46±3.36 51.15±2.47 23.75±2.20 66.82±4.52

HT-noW 76.51±1.45 81.14±3.31 48.95±2.88 24.99±1.32 67.61±4.75

HT-noReg 76.33±1.23 80.76±4.40 50.62±3.93 23.82±2.43 65.23±4.80

CRNN 69.79±1.15 79.47±2.03 47.03±6.59 18.53±2.23 61.79±1.83

HT* 78.54±2.06 83.86±2.24 56.28±2.53 25.95±1.67 73.60±1.80
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several different annotations for the same harmonic entity 
are often equally viable due to the analytical essence of 
the recognition process, and the subjectivity in the ground 
truth will affect the evaluation of ACR systems (Ni et al., 
2013). It is possible to take into account the relations 
between different annotations or predictions, and develop 
new loss functions for optimizing a deep learning model 
(Carsault et al., 2018).

Chord segmentation quality is another useful criterion 
for assessing frame-based ACR models, as the chord 
progressions obtained from these models should not be 
fragmented. Considering that chord boundary detection 
and chord recognition are intertwined problems, the 
ACR task may benefit from other advanced segmentation 
strategies, such as hierarchical representation (Chung 
et al., 2017), segmentation gates (Wang et al., 2018), and 
segment-directed attention (Hou et al., 2020). Instead of 
the frame-wise chord recognition, it is also worthwhile 
to explore methods for recognizing chords at a higher 
hierarchical level (Korzeniowski and Widmer, 2018).

As for functional harmony recognition, the experi-
mental results suggest that there is still a long way to go 

to automatically produce RN analyses of sufficiently high 
quality. As functional harmony recognition relies heavily 
on the semantic content of music, it would be beneficial 
to leverage more high-level musical elements (e.g., 
metrical position and phrasing) for data representation. 
Moreover, designing reasonable output vocabularies 
is also important. Chen and Su (2019) predict the 
components of each RN label individually, while in the 
current experiments, they are combined into a single RN. 
The former reduces the output size of each component, 
but makes the components somewhat independent of 
each other; the latter alleviates the dependency issue 
but enlarges its output vocabulary size. Therefore, it is 
required to mediate between the two approaches. In 
addition, RN analysis is a fundamental tool for music 
theorists to uncover the tonal structure of music; hence 
human-in-the-loop approaches to functional harmony 
recognition are also valuable (Micchi et al., 2020).

Finally, currently available datasets for symbolic ACR 
are usually small and homogeneous. More work devoted 
to creation of symbolic datasets is thus welcomed. More 
diverse corpora would enable researchers to develop 

Figure 4: Examples of the attention maps in the MHA units; the color bars show the relative intensity of attention. The 
input segment is Beethoven’s Piano Sonata No. 1, MM. 1–8. (a) Two attention heads in the intra-MHA of the decoder. 
The vertical and the horizontal axes respectively represent the queries and the keys, both of which indicate the same 
sequence to be recognized. (b) Two attention heads in the inter-MHA of the decoder. The vertical axis is the decoder 
sequence to be recognized (queries), and the horizontal axis is the encoder sequence (keys) for the chord change 
estimation (the positions where the chords change are indicated by vertical dashed lines).
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standard benchmarks for a more comprehensive and 
systematic evaluation.

5. Conclusion
We systematically studied two Transformer-based ACR 
models in terms of model architecture, chord recognition 
accuracy, and chord segmentation quality. Furthermore, 
we also examined how the major components of the two 
models affect the overall performance. Based on one of 
the two models, we further improved the performance by 
leveraging the local context and the positional information 
of input music. In addition, experimental results showed 
that multi-head attention has the potential to capture 
various harmonically meaningful features in the scenario 
of ACR. We consider that attention-based models are 
promising for recognizing chords, not only because they 
have yielded fruitful results in various sequence modeling 
tasks, but also the attention mechanism is capable of 
accessing sequences in a relatively comprehensive way 
without being constrained by the receptive field of 
convolutions or by the sequential order of recurrences.

We have put emphasis on ACR in general and on the 
deep learning-based systems for symbolic music in 
particular, due to their potential to scale up the harmony-
related annotation data. This enables us to investigate 
harmony from a macro perspective. With such a process, 
researchers will be able to provide a different insight into 
harmony than may be observed otherwise with a small 
number of musical instances. We hope that our research 
will draw more attention to symbolic ACR and encourage 
the MIR community to build datasets and develop 
techniques for symbolic music.

Notes
 1 The implementations of the BTC and the HT can be 

found at https://github.com/jayg996/BTC-ISMIR19 
and at https://github.com/Tsung-Ping/Harmony-
Transformer, respectively.

 2 The implementations of the models for evaluation 
can be found at https://github.com/Tsung-Ping/
Harmony-Transformer-v2.
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